

Innovative concept for methanol synthesis using unconventional gases as feedstock

5th Nuremberg Workshop on Methanation and 2nd Generation Fuels 28.05.2021

S. Haag, T. Renner, C. Drosdzol, J. Hagemann, F. Castillo-Welter

AIR LIQUIDE FORSCHUNG & ENTWICKLUNG

T. Oelmann, T. Schuhmann, M. Gorny AIR LIQUIDE Engineering and Construction

PUBLIC

Content

- Conventional Methanol Technology
- Methanol Developments at Air Liquide
- 1st Generation CO2-to-MeOH
- 2nd Generation CO2-to-MeOH
- EU i3upgrade project: New pilot plant for valorization of off-gases from steel plant
- Conclusion

Conventional Methanol Technology

THIS DOCUMENT IS PUBLIC

28.05.2021

Methanol: Air Liquide's Track Record

- Different feedstocks
 - Natural gas, naphtha, coal, residue
 - Over 60 licenses: total capacity of 49.0 MMTPY
- Long-standing cooperation with CLARIANT
- Full service portfolio
 - Licensing + proprietary design
 - Basic + detailed engineering design
 - Construction + commissioning services
 - Provision of industrial gases (O_2, N_2, CO_2, N_2)
- Extensive R&D facilities at AL

Lurgi MegaMethanolTM: Most recent operating reference

< Customer: Natgasoline LLC

< Process: Lurgi MegaMethanol™

< Licensor: Air Liquide

< Plant Capacity: 5,000 mtpd

Feedstock: Natural Gas

< Scope of Work: L, BE, DE, Prop Eqs.

< Start-Up Year: 2018

< Project Highlights: Largest MeOH plant in the US

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021

Methanol Development @ AL

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021

Methanol at Air Liquide

Catalyst Tests

Kinetic experiments

Catalyst validation

New operating conditions

Pilot Plants

Long-time tests

Design data

Direct scale up to commercial size

Reactor Engineering

Reactor design

Process design

Cost estimates

Process optimization

Modelling & Studies

Kinetic models

Process simulation

Economic feasibility

Analytics

Process analytics

Development of new methods

Support / planning for labs in plants

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Methanol Pilot Plant (in operation since 2007)

- Reflects different methanol loop configuration of commercial plants
- Designed for high TOS test campaign (24/7 operation)
- All syngas composition (up to 95 bar) can be mixed
- Different process configuration
 (1stage synthesis, MegaMethanol design, etc.)
- Fast variation of process parameters for kinetic model training

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALT

l 28.05.202

Scale up (1stage synthesis)

Commercial world-scale reactor 4718 Tubes 40.3 mm ID

Pilot Plant 1 Tube 25.6 mm ID

THIS DOCUMENT IS PUBLIC

28.05.2021

Validation: Pilot plant vs. Commercial plant

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021

2 CO₂ based Methanol: Generation 1

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

11 28.05.2021

CO2-to-MeOH campaign

CO2 + H2 operational focus

- Approx 120 kg MeOH/d on CO2
- More than 4000 h TOS
- Variation of process parameters based on DoE

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

12 28.05.2021

Kinetic Model training

Gas Composition:

 $y(CO_2)$ 24,0 vol% $y(H_2)$ 74,0 vol% $y(N_2)$ 2,0 vol%

Space Velocity: 10 000 h⁻¹

Pressure 65 ... 95 bar

Cooling Temperature 240 ... 260 °C

Recycle Ratio 3 ... 6

Design of Experiments

DoE provides more value of each data point.

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

13 28.05.2021

Generation 1: Classical Loop Set-up

(+) commercially available catalyst

(+) commercially proven equipment

(+) available with commercial guarantees

THIS DOCUMENT IS PUBLIC

28.05.2021

CO₂-Based Methanol: 2nd Generation

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021 15

Key Process principles: 2nd Generation

Multi-stage with inter-condensation:

- higher (single pass) conversion
- lower gas recycle (4.5 -> 1.0 or lower)
- less H₂O flow on the catalyst
- longer lifetime (expected)
- smaller equipments
- fast adaptation to fluctuating (feed gas) conditions with...

...Gas Recycle

... "water/steam cooled" Reactor

1 stage (1st generation)

3 stages (2nd generation)

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

16 28.05.2021

Generation 2: Integrated Multi-Stage concept

Pillow plate

process integration

- Up to 20% lower CAPEX for synthesis section
- Up to 50% plot plan reduction

Generation I vs Generation II

1% inerts		Generation I	Generation II (as example with 3 stages)
Recycle ratio - Loop	-	4	1
Space time yield	kg/l/h	0.7	0.7
Hydrogen conversion	%	96	96

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021

Generation II Setup

Advantages compared to Generation I:

- Lower CAPEX due to integrated solution
 - Higher per pass conversion -> lower recycle ratio
 - Lower equipment count
- Small plant size \rightarrow ideal for add on solutions / revamp
- Reduced utility consumption
- Expected longer catalyst lifetime

EU i3upgrade project: New pilot plant for valorization of off-gases from steel plant

THIS DOCUMENT IS PUBLIC

28.05.2021

i3upgrade project

Key figures

- EU Funding: Research Fund for Coal and Steel (RFCS)
- i³upgrade: integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry
- Start: June 2018 / Duration: 42 Months

Partners

Website: https://www.i3upgrade.eu/

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

5th Nuremberg Workshop on Methanation and 2nd Generation Fuels

21

28.05.2021

New pilot built in the frame of i3upgrade

Process validation of multi-stage concept (tubular basis, non-integrated)

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

5th Nuremberg Workshop on Methanation and 2nd Generation Fuels

22

2 28.05.202

New pilot built in the frame of i3upgrade

- Reactor with tubes
- Several reactor stages
- Various flow schemes possible
- Heat transfer to steam system
- Temperature profile measurement
- Throughput:
 - Feed gas up to 35 m³_N/h
 - Raw methanol product up to 20 kg/h

- Comprehensive control & automation devices:
 - 178 Temperature
 - 70 Pressure
 - 29 Flow
 - 9 Level
 - 6 others
- Analysis points:
 - Hot gas sampling (preferred)
 - 11 for gases (online)
 - 5 for liquids (offline)

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

HIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

First test campaign without recycling

Typical Blast Furnace Gas composition + additional H2 (adjusted SN to 1.5)

- Composition: 12.1v%CO2, 12.9v%CO, 49.9v%H2, 25.1v%N2
- High amount of nitrogen!
- Low stoichiometric number (low amount of hydrogen)!
- 4 stages filled with catalysts
- Interstage condensation & separation
- Once-through operation
- Different pressure: 50, 70, 90, 110 bar
- Different load: 6.7 Nm³/h, 11.2 Nm³/h, 15.8 Nm³/h

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

First test campaign without recycling

P bar	MUG Nm³/h	X_CO2 plant	X_CO plant	X_H2 plant
50	6.7	33.2%	88.4%	63.6%
70	6.7	39.1%	93.3%	72.7%
70	11.2	37.3%	92.2%	70.6%
90	6.7	45.0%	95.4%	78.1%
90	11.2	43.8%	94.9%	76.6%
90	15.8	42.8%	94.1%	74.4%
110	6.7	49.3%	96.5%	81.9%

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

THIS DOCUMENT IS PUBLIC | AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY A

First test campaign without recycling

Position of thermo couple [%], catalyst bed from 0-100%, top to bottom

280

<u>ට</u> 260

e 250

240

230

P bar	MUG Nm³/h	Tota by-products wt-ppm
50	6.7	3808
70	6.7	3928
90	6.7	3909
110	6.7	3548

By-products formation is in a good range for the distillation section even by fluctuating operation and fluctuating Tmax in the first stage!

AND SERVICES FOR INDUSTRY AND HEALTH

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

Conclusion

CO2-to-MeOH process:

- incorporates Air Liquide's long experience in Lurgi™ MeOH technology for conventional feedstocks
- o 1st Generation CO2-to-MeOH available with commercial guarantees
- The 2nd Generation CO2-to-MeOH provides you the latest and enhanced process together with the integrated reactor design

New pilot plant at AL R&D:

- Successfully started (already more than 1000 h-o-s in operation)
- Will support new developments in CO2-to-MeOH and in valorization of off-gases from industries
- Possible use of hydrogen produced by an electrolyzer in the near future

Thank you very much!

Any Questions?

You can direct further inquiries and questions to:

Stéphane Haag

stephane.haaq@airliquide.com

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

28.05.2021

Methanol from CO2

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

29 28.05.2021

5th Nuremberg Workshop on Methanation and 2nd Generation Fuels