

TECHNISCHE FAKULTÄT

ADDmeth

additive manufacturing for catalytic methanation

single unit cell

with triangular shape is the basis for a up-scale

grates

keep commercial catalyst pellets in place

conic reaction channel

forms key innovation: variation of local residence time improves temperature control and product yield

fluid reservoir

connects all three heat pipes and levels cooling pressure and temperature

evaporator

converts the released reaction heat to useful saturated steam

thermowells

are integrated for axial temperature measurement

lattice structure

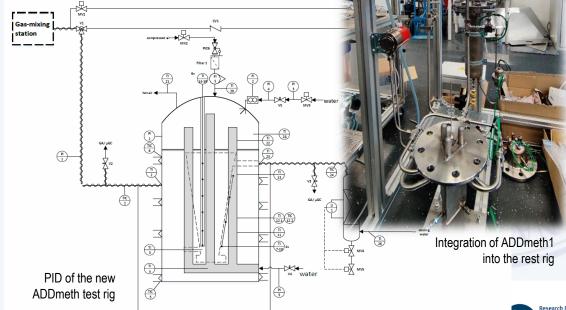
reduces material consumption and improves stability and feed gas preheating

heat pipes

allow very high heat flux densities and isothermal heat transport

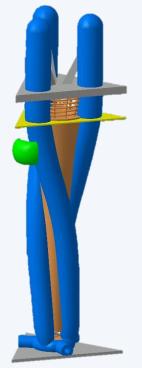
i ³upgrade ADDmeth – additive manufacturing for catalytic methanation

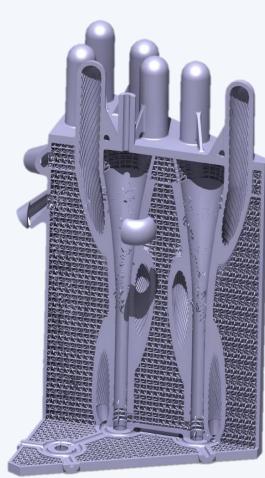
FRIEDRICH-ALEXANDER UNIVERSITÄT **ERLANGEN-NÜRNBERG**


ADDmeth1

5 kW bench-scale reactor of the ADDmeth concept

ADDmeth1 with fittings and piping for reactants, product gas, cooling and instrumentation




European

ADDmeth2

20 kW up-scale of the ADDmeth concept

modified single unit cell for up-scale

metal printed 20 kW up-scale ADDmeth2 ready for test rig integration

FRIEDRICH-ALEXANDER **ERLANGEN-NÜRNBERG**

TECHNISCHE FAKULTÄT

The ADDmeth concept was investigated within the EU project i³upgrade

³upgrade

intelligent integrated industries

This project received funding from the Research Fund for Coal and Steel under grant agreement No. 800659.

Contact:

Alexander Hauser, M. Sc.

Chair of Energy Process Engineering (EVT) Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Fürther Str. 244f, 90429 Nürnberg Phone: +49 911 5302 9029 Email: alexander.hauser@fau.de

