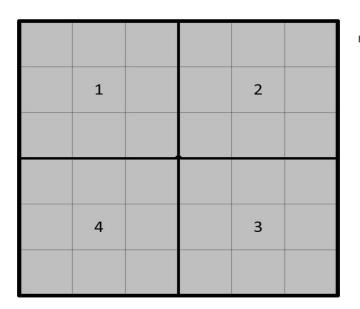
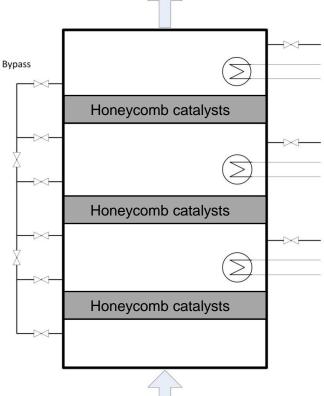

WP 2 - Montanuniversität Leoben (MUL)


Innovative reactor design

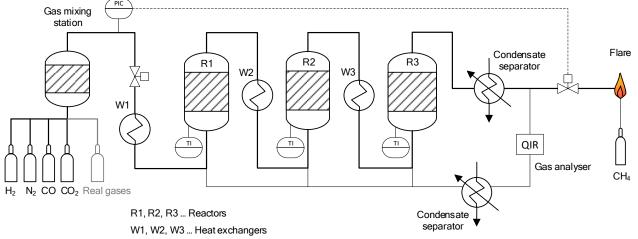

- Load flexible reactor concept with honeycomb catalyst
 - Simple scale-up & modularisation
 - Enhanced stand-by properties and Δp
- Arrangement of honeycombs in compartments
 - Cyclic operation enhances load flexibility
 - Ceramic carrier enables heat storage

Honeycomb catalyst

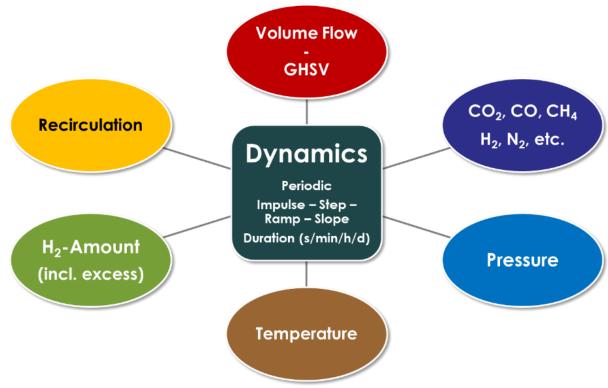
- Cordierite with high thermal shock resistance
- Two-stage wash-coat with Boehmite
 & Nickel as catalytic active material
- Catalyst <u>and</u> heat storage medium

WP 2 - Montanuniversität Leoben (MUL)

Research Fund for Coal & Steel i up



Dynamic methanation experiments



Lab-scaled reactor setup

- 3 reactors in series
- $p_{max} = 20 bar$
- $T_{max} = 700 \, ^{\circ}C$
- $\dot{V}_{max} = 50 \text{ NL/min}$
- Bulk/honeycomb catalyst

Dynamic operating parameters

- Experiments with synthetic BFG & BOFG as well as bottled real gases
- Main dynamic case: total volume flow variation due to available H₂ amount from electrolyser

WP 2 - Montanuniversität Leoben Summary and results

- Full CO_x conversion for steady-state experiments
 - ... with synthetic BFG and BOFG
 - ... with a hydrogen surplus of 4% ($H_2/CO_x = 1.04$)
 - ... for bottled real gases additional gas cleaning is required (e.g., CuO-coated activated carbon adsorbents)
- Only small variations in CO_x conversion and dry product gas composition for dynamic experiments
 - ... with synthetic BFG, BOFG as well as bottled real gases
 - ... for load changes of \pm 25% in syngas power in the range of minutes and hours
- Long-term, repeatable & consistent methanation performance for honeycomb catalyst

Contact details

Dipl.-Ing. Philipp Wolf-ZöllnerTel.: +43 3842 402-5008
philipp.wolf-zoellner@unileoben.ac.at

Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben, Austria

