

Cryogenics & Lurgi technologies

A New Reactor Concept for Conversion of CO₂ to **Methanol**

T. Oelmann, T. Schuhmann, M. Gorny (Air Liquide Engineering and Construction) C. Drosdzol, S. Haag, F. Castillo-Welter (Air Liquide Forschung und Entwicklung)

THIS DOCUMENT IS • Public

Frankfurt • October 2020

ENGINEERING & CONSTRUCTION

This document and the information contained herein is l'Air Liquide S.A. or one of its affiliates' property. The document is confidential business information and may furthermore contain confidential technical information. It is provided to certain employees of the Air Liquide Group for their internal use exclusively in the course of their employment. Any reproduction or disclosure of all or part of this document to third parties is prohibited without the express written consent of an authorized representative within the Air Liquide Group. If you have received this document by mistake, please immediately notify the sender and destroy the original message

Content

- **Conventional Methanol Technology**
- Methanol Developments at Air Liquide
- 1st Generation CO2-to-MeOH
- 2nd Generation CO2-to-MeOH
- Conclusion

2

Conventional Methanol Technology

THIS DOCUMENT IS • Public

3

October 2020

• AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

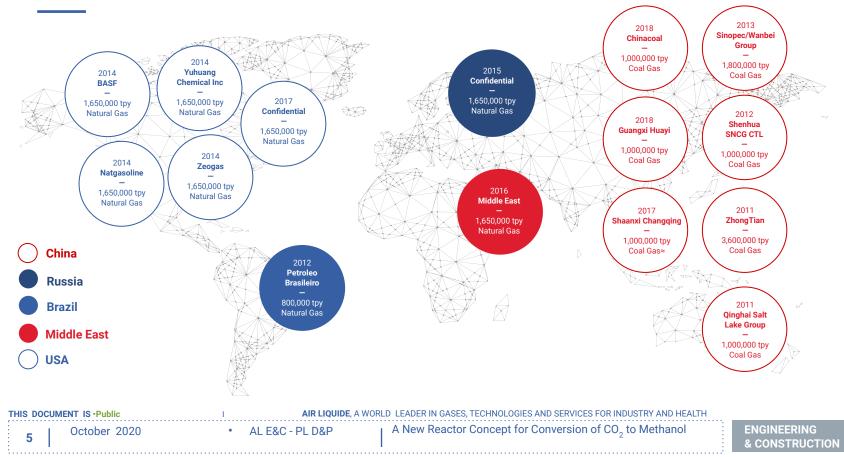
Methanol: Air Liquide's Track Record

Different feedstocks

- Natural gas, naphtha, coal, residue
- Over 60 licenses: total capacity of 49.0 MMTPY

Long-standing cooperation with CLARIANT

- Full service portfolio
 - Licensing + proprietary design
 - Basic + detailed engineering design
 - Construction + commissioning services
 - Provision of industrial gases (O_2, N_2, CO_2, N_2)
- Extensive R&D facilities at AL


THIS DOCUMENT IS • Public

October 2020

AL F&C - PL D&P

GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH A New Reactor Concept for Conversion of CO₂ to Methanol

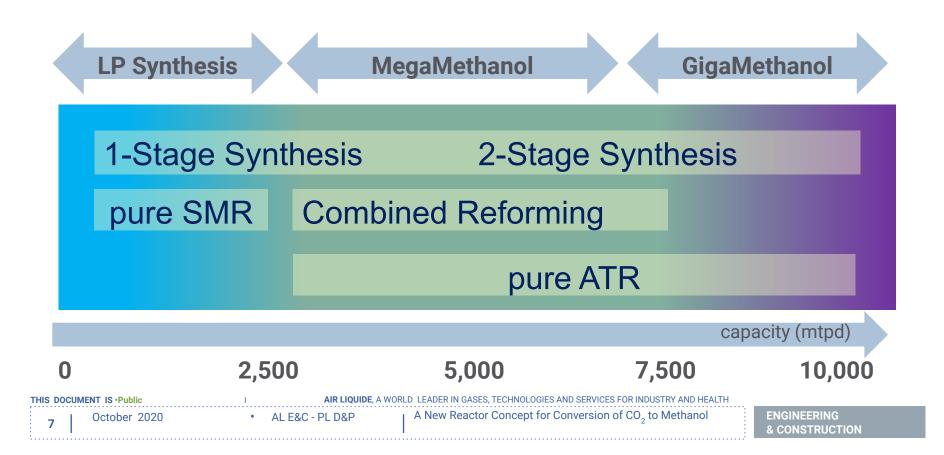
Recent Air Liquide Methanol Licenses

Lurgi MegaMethanolTM: Most recent operating reference

- < Customer: Natgasoline LLC
- Process: Lurgi MegaMethanol™
- < Licensor: Air Liquide
- < Plant Capacity: 5,000 mtpd

- < Feedstock:
- < Scope of Work:
- < Start-Up Year:
- < Project Highlights:

- Natural Gas
- L, BE, DE, Prop Eqs.
- 2018
 - Largest MeOH plant in the US


THIS DOCUMENT IS • Public

October 2020

• AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Methanol Plant concepts

Methanol Development @ AL

THIS DOCUMENT IS • Public

8

October 2020

AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

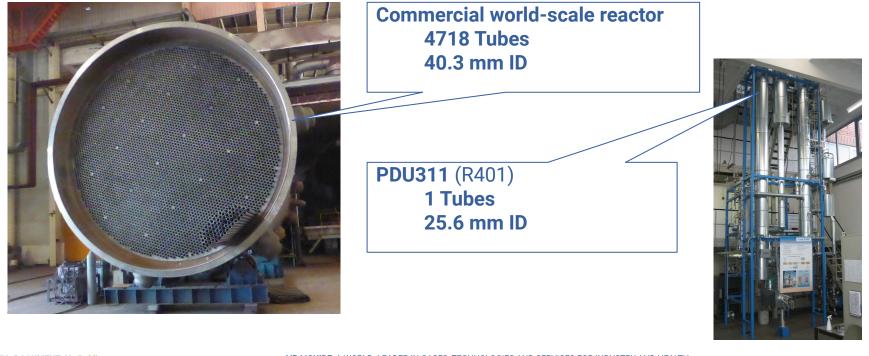
Methanol at Air Liquide

Catalyst Tests	Image: Notest and the second	<image/>	Modelling & Studies	Analytics
Kinetic experiments	Long-time tests	Reactor design	Kinetic models	Process analytics
Catalyst validation New operating conditions	Design data Direct scale up to commercial size	Process design Cost estimates Process optimization	Process simulation Economic feasibility	Development of new methods Support / planning for labs in plants
THIS DOCUMENT IS •Public 9 October 2020	I AIR LIQUIDI • AL E&C - PL D&P		AND SERVICES FOR INDUSTRY AND HEALTH Conversion of \rm{CO}_2 to Methanol	ENGINEERING & CONSTRUCTION

Methanol Process demonstration Unit (PDU311)

- Reflects different methanol loop configuration
 of commercial plants
- Designed for high TOS test campaign (unmanned operation (~5 days)
- All syngas composition (up to 95 bar) can be mixed
- Different process configuration
 (1stage synthesis, MegaMethanol design, etc.)
- Fast variation of process parameters for kinetic model training

THIS DOCUMENT IS • Public


10

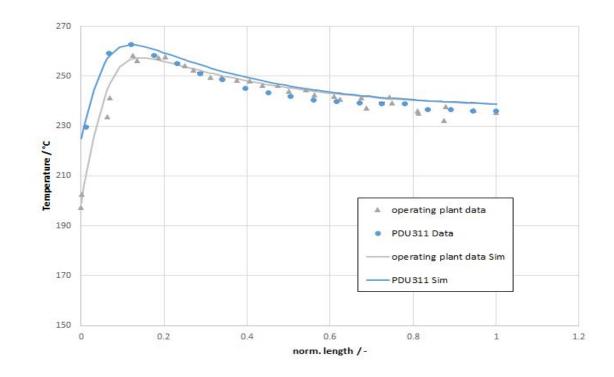
October 2020

• AL E&C - PL D&P

IDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH A New Reactor Concept for Conversion of CO, to Methanol

Scale up (1stage synthesis)

THIS DOCUMENT IS • Public


11

October 2020

• AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH DL D&P I A New Reactor Concept for Conversion of CO, to Methanol

Validation: PDU vs. Commercial plant

Key Data Operating Plant

- Only commercial plant that can measure detailed temperature profile
- 2000 mtpd
- Coal based
- One model for PDU and commercial plant

PDU is restricted in adjustment of inlet temperature

THIS DOCUMENT IS • Public

Public

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

12 October 2020

• AL E&C - PL D&P

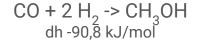
A New Reactor Concept for Conversion of CO₂ to Methanol

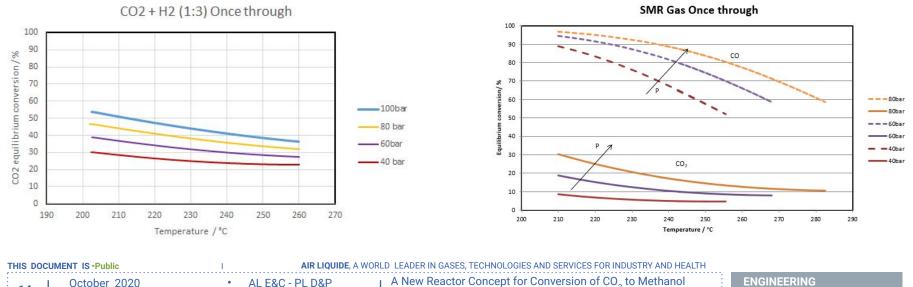
2CO₂ based Methanol: Generation 1

THIS DOCUMENT IS • Public

13

October 2020

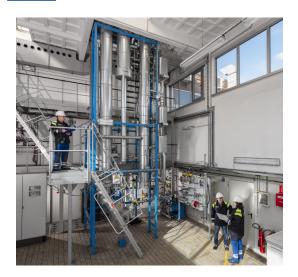

• AL E&C - PL D&P


AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

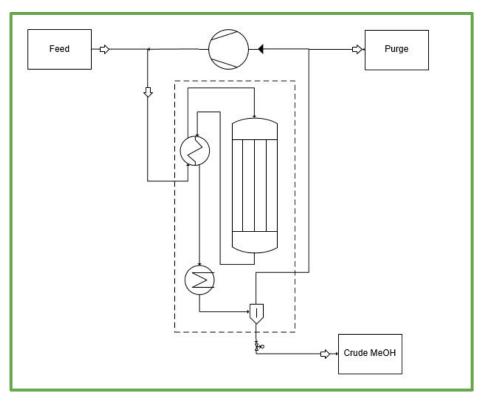
CO₂- Based Methanol - Fundamentals: Introduction chemistry

CO₂ + 3 H₂ -> CH₃OH + H₂O dh: -49,6 kJ/mol


14

AL E&C - PL D&P

A New Reactor Concept for Conversion of CO₂ to Methanol


& CONSTRUCTION

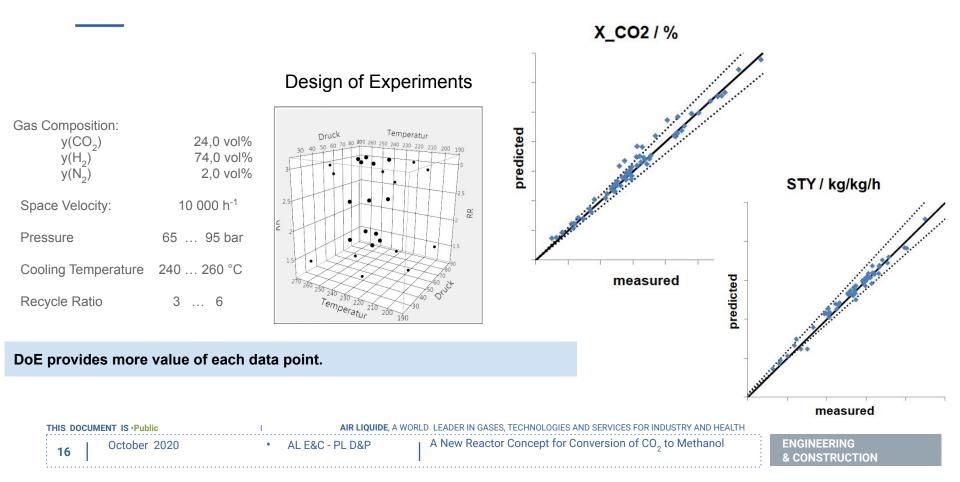
CO2-to-MeOH campaign with PDU311

CO2 + H2 operational focus

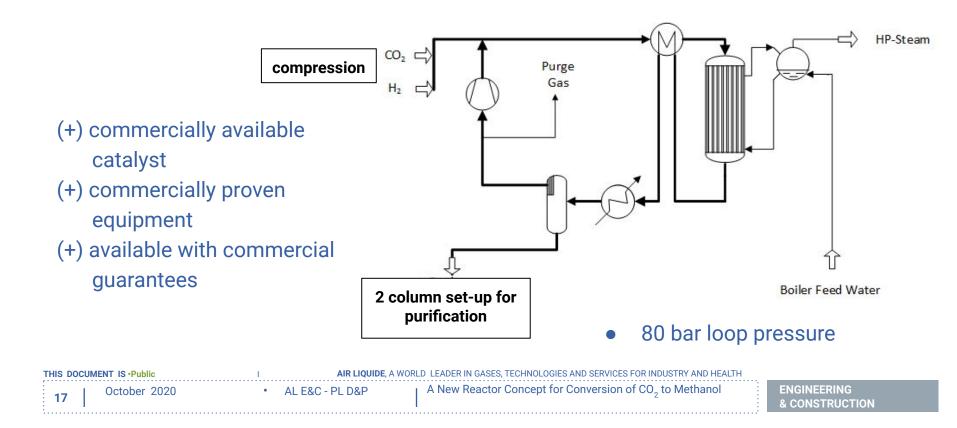
- Approx 120 kg MeOH/d on CO2
- More than 4000h TOS
- Variation of process parameters based on DoE

THIS DOCUMENT IS • Public

15


October 2020

• AL E&C - PL D&P


AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

Kinetic Model training

Generation 1: Classical Loop Set-up

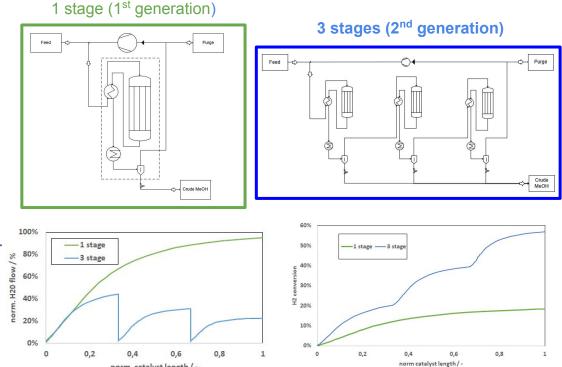
B CO₂-Based Methanol: 2nd Generation

THIS DOCUMENT IS • Public

18

October 2020

• AL E&C - PL D&P


AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

Key Process principles: 2nd Generation

Multi-stage with inter-condensation:

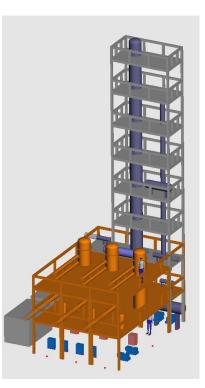
- higher (single pass) conversion
- lower gas recycle (4.5 -> 1.0)
- less H₂O flow on the catalyst
- longer lifetime (expected)
- smaller equipments
- fast adaptation to fluctuating (feed gas) conditions with...
 - ...Gas Recycle
 - ... "water/steam cooled" Reactor

norm. catalyst length / -

THIS DOCUMENT IS • Public

19

October 2020


• AL E&C - PL D&P

JIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH A New Reactor Concept for Conversion of CO, to Methanol

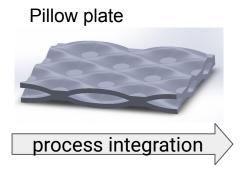
Generation 2: Multi-Stage concept

TIP last year

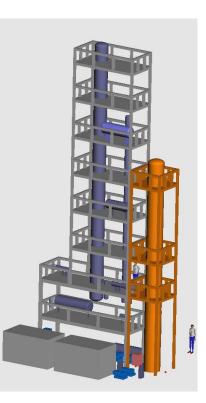
- 3 reaction stages
- Individual reactors and heat-exchangers
- Optimum process

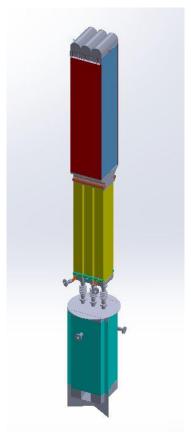
Non integrated

THIS DOCUMENT IS • Public


20 | October 2020

• AL E&C - PL D&P


AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH


A New Reactor Concept for Conversion of CO_2 to Methanol

Generation 2: Integrated Multi-Stage concept

- Up to 20% lower CAPEX for synthesis section
- → Up to 50% plot plan reduction

(under development)

THIS DOCUMENT IS • Public

October 2020

21

AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH A New Reactor Concept for Conversion of CO₂ to Methanol

Generation II Setup

Advantages compared to Generation I:

- Lower CAPEX due to integrated solution
 - Higher per pass conversion -> lower recycle ratio
 - Lower equipment count
- Small plan size \rightarrow ideal for add on solutions / revamp
- Reduced utility consumption

 THIS DOCUMENT IS •Public
 I
 AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

 22
 October 2020
 • AL E&C - PL D&P
 A New Reactor Concept for Conversion of CO₂ to Methanol

Generation I vs Generation II

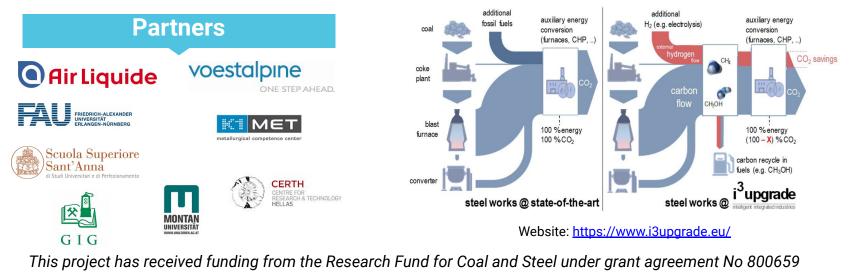
1% inerts		Generation I	Generation II	10% inerts		Generation I	Generation II
Recycle ratio - Loop	-	4	1	Recycle ratio - Loop	-	4	1
Space time yield	kg/l/h	0.7	0.7	Space time yield	kg/l/h	0.55	0.45
Hydrogen conversion	%	96	96	Hydrogen conversion	%	80	90

2nd generation shows better hydrogen efficiency at increased inert content.

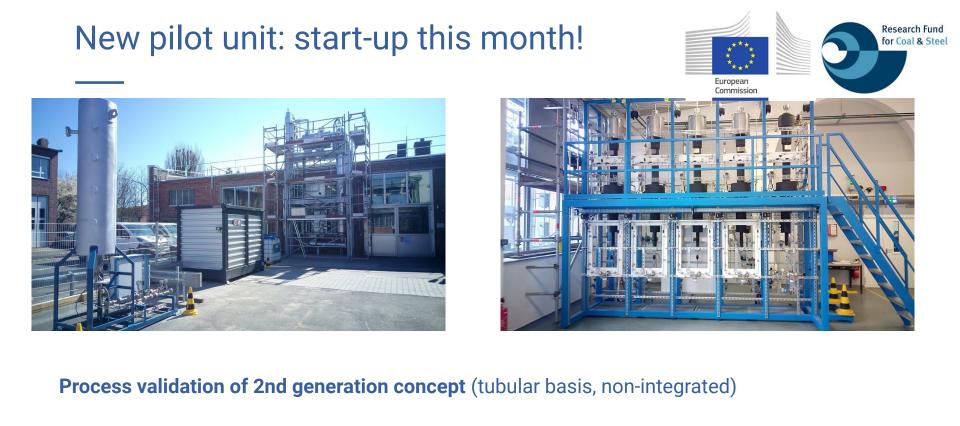
THIS DOCU	MENT IS • Public	1		WORLD LEADER IN G
23	October 2020	•	AL E&C - PL D&P	A New Rea

A New Reactor Concept for Conversion of CO₂ to Methanol

New pilot unit: i³upgrade project


Key figures

- EU Funding: Research Fund for Coal and Steel (RFCS)
- **i³upgrade:** integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry
- Start: June 2018 / Duration: 42 Months


THIS DOCUMENT IS • Public

24

October 2020

I AIR LIQUIDE, A WOF	RLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
• AL E&C - PL D&P	A New Reactor Concept for Conversion of CO ₂ to Methanol	ENGINEERING
	-	& CONSTRUCTION

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 800659

THIS DOCUMENT IS • Public	1	AIR LIQUIDE	A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
25 October 2020	•	AL E&C - PL D&P	A New Reactor Concept for Conversion of CO ₂ to Methanol	ENGINEERING & CONSTRUCTION

Conclusion

THIS DOCUMENT IS • Public

October 2020

• AL E&C - PL D&P

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A New Reactor Concept for Conversion of CO₂ to Methanol

- CO2-to-MeOH process incorporates Air Liquide's long experience in Lurgi[™] MeOH technology for conventional feedstocks
- 1st Generation available with commercial guarantees
- The **2nd Generation** CO2-to-MeOH provides you the latest and enhanced process together with the **integrated reactor** design

O Air Liquide

Thank you!

You can direct further inquiries and questions to:

Martin Gorny

martin.gorny@airliquide.com

Stéphane Haag

stephane.haag@airliquide.com

Tobias Oelmann

tobias.oelmann@airliquide.com